



# Educating the Next Generation of Scientists & Engineers for America

#### William A. Barletta

Director, United States Particle Accelerator School
Dept. of Physics, MIT
Dept. of Physics and Astronomy, UCLA

### PHI

## Motivations: Why does the Nation care? Why should students care?





Basic Research

Exciting products...
exciting opportunities

### Plif

### Accelerators are the hallmark of highly technological societies





Societal applications & their technology develop from basic research



#### Accelerators are big business







Annual growth is several percent

Sales >3.5 B\$/yr Value of treated good > 50 B\$/yr \*\*

- Radiotherapy (>100.000 treatments/yr)\*
- Medical Radioisotopes
- Research (incl. biomedical)
- >1 GeV for research
  - Industrial Processing and Research
  - Ion Implanters & Surface Modification

Major research machines are a tiny fraction of the total, but...

### PHIT

# World-leading discovery science is America's competitive advantage





Accelerators are essential tools for discovery in physics, chemistry & biology









## World-leading scientific education is also America's competitive advantage





We attract and train top talent from around the world to attend US universities & use US scientific facilities

### PHIT

# DOE accelerators train future physicists, chemists & biologists for America





Roughly 2/3 of facility users are students



#### Who pilots the machines?



- \*\* These machines are conceived of, design, built, operated & up-graded by a few hundred accelerator physicists
  - → A large fraction of these were trained outside the US
- \*\* Many of my generation were HEP & NP experimentalists who learned about machines at accelerators on campus
  - → *Very few of these now exist*
- \*\* Modern accelerators also require a much larger (2 3x) cadre of knowledgeable engineers
  - → Many critical courses are no longer offered in engineering departments
    - e.g., power electronics, microwave & rf-systems



#### To summarize the problem



- \*\* Accelerators are essential tools for discovery science
- \*\* DOE spends almost 1 B\$ on major accelerator facilities
- \* > 26,000 accelerators in medicine, industry & national security constitute a multi-billion dollar/yr industry
- \* > 55,000 peer-reviewed papers having accelerator as a keyword are available on the Web

Yet...

Only a handful of universities offer any formal training in accelerator science & technology



#### Moreover, accelerators for future science...



- \* ... Will be more challenging to design &build
- \* ... Will be more challenging to operate



- \* ... Will need outstanding physicists & engineers to realize
- \* ... Will need experimentalists knowledgeable about accelerators to exploit fully



#### Reasons & excuses



#### **\*\*** Structure:

→ Accelerator science is inherently cross-disciplinary

#### \* Prejudices:

- → Physics departments, "accelerator science is 'just technology'"
- → EE departments prefer nano-technology & computing science

#### **\*\*** Practicalities:

- → It is difficult to enroll enough students for university approval
  - Even Cornell, UCLA, & Stanford can only offer core courses
- → Accelerator R&D at universities is insufficient to support strong faculty lines

# This serious challenge was recognized by HEPAP sub-panels



- \* "The education & the training of the next generation of accelerator scientists & engineers is a *serious concern*."
- \* "The limited number of educational opportunities at universities is insufficient to meet anticipated future needs."

Advanced Accelerator R&D Sub-panel Report

\*\* "The *present* University Grant Program level of effort shortfall is not consistent with US intentions to host the ILC."

University Grant Program Sub-panel Report

The USPAS is dedicated to responding to this challenge



#### **DOE** & its laboratories must...



\* ... Attract top undergraduate talent to graduate study of accelerator physics as well as accelerator-based science



The USPAS is a central element in accelerator education in America



#### The USPAS Partnership Vision





The US Particle Accelerator School provides graduate-level educational programs in the science of beams and their associated accelerator technologies

We grant more academic credit in accelerator science & technology than any university in the world



# Major US universities are our essential partners in education



- \*\* Universities with strong graduate programs in accelerator physics provide a large student attendance at USPAS
  - → Only Maryland, Cornell, MSU, UCLA, & Stanford have strong faculty lines (>2 professors)

Accelerator-based science needs several more such universities to assure an adequate, well trained professional workforce

- **\*** Universities with research accelerators
  - → Emphasize innovation in accelerator science
  - → Promote undergraduate awareness
    - MSU 50 UGs annually; Cornell 60 UGs annually
  - → Offer exciting opportunities to engineering students
  - → Encourage student experimentalists to learn about accelerators
  - → Are a vanishing breed

### Plif

### Eight universities represent 80% of university attendees at USPAS ('99 - '08)





Of remaining PhDs granted (30%) many are from other lab-associated universities

### PHI

# USPAS charter & financial model for educational stewardship



- \*\* Founded & nurtured under HEP auspices
- \*\* Letter from the four Energy Research AD's allows & encourages national laboratory sponsorship & support (1992)
  - → Re-confirmed by DOE/SC & NSF in 2008
- \*\* Constituted as a partnership of sponsoring institutions
  - → 7 SC laboratories (FNAL, ANL, BNL, JLAB, LBNL, ORNL, SLAC)
  - → 2 NNSA laboratories (LANL, LLNL)
  - → 2 NSF funded universities (Cornell, MSU)
  - → 1 DHS office (DNDO/TARD)
- \* Partner institutions have funded all program costs
  - $\rightarrow$  Partner support 30 k\$/yr + faculty (only increased once in ~20 years)
- \* HEP funds USPAS Office at FNAL
  - → Managing Institution



## USPAS educational operations stress academic rigor



- \* 2 schools annually hosted by a major research university
  - → 8 intense university, courses run in parallel (45 contact hours in 2 weeks)
  - → Balance physics v. engineering, lectures v. hands-on
- **\*\*** Typical attendance per school ~ 130 students (recently ~150)
  - → Scholarship support available for matriculated graduate students who take courses for credit
  - → Credit-student workload during course > 8 hr/day
  - → Graded homework & exams
- # 40 university-style schools with >3100 individual students
  - $\rightarrow$  Attended more than >1x / >2x / 3x >1030 / >450 / >200
  - → >200 have become intellectual leaders in their field
  - → >25 USPAS graduate students have become USPAS instructors

### We continually develop new offerings for our constituency



\*\* New lecture courses in 2008



→ Radiation Imaging for Medicine & Homeland Security

→ Special opportunity: "Vacuum Electron Devices"



- → Synchronization, Timing & RF Signal Processing
- → Synchrotron Light-based Beam Diagnostics
- → Accelerator Diagnostics





#### The strongest demand is for fundamentals





\* In 2008 two medicine related courses had more than doubled to > 20 students



## We expect another session of ~150 students; two-thirds receive financial support



\* Years with visa issues; ~25% of attendees come from outside the US

The present USPAS financial model cannot sustain this level of student enrollment / support



#### USPAS partners provide 2/3 of our faculty





We thank our instructors for their dedicated work





Normalizing MSU & Cornell by operating budget ==> interest level equivalent to Fermilab and SLAC





#### **Degree Programs**



#### **Academic Outreach**





#### **Master of Science**

in

#### **Beam Physics and Accelerator Technology**

from

#### **Indiana University & USPAS**

7 degrees awarded

6 Students currently enrolled in program

Requirements: 30 Credit Hours: with grade point average of B or above

- \* IU/USPAS Courses & Master's Thesis (3 9 credits)
- \* Final Examination or oral defense of thesis

Nearly all are lab employees who get a promotion as a result

### PHIT

# **Undergraduate outreach: Teng Internship at Argonne & Fermilab**





- \* Engage highly promising postjunior undergrads to study
  accelerator science & technology
- \*\* Encourage them to pursue graduate research & education in these fields
- Interns study Fundamentals at USPAS
- During remainder of summer, students undertake research project at the labs
- \*\* ANL and FNAL selected 11 Teng interns in 2008 & 2009
- \* We provide advice on graduate programs

### Plif

## Joint University-Fermilab Program: Accelerator Physics PhD



- ★ Established in 1987
  - → 1st graduate M. Syphers (UIC)
    - Taught 11 USPAS courses
- \*\* On average 5-8 students in the program simultaneously
  - → 37 PhD graduates in 22 years
- \* Students apply & propose course of research
  - → Admitted after passing university qualifying exams
  - → Each has an University advisor & FNAL mentor
  - → Research supported by FNAL



# BNL & Stony Brook University: Center for Accelerator Science & Education

- \*\* Joint effort to nurture & grow existing efforts in accelerator science
  - → BNL's RHIC, NSLS & ATF provide unique opportunities for cutting-edge graduate & undergraduate accelerator research
- **\*\*** The **CASE** Mission:

Pursue cutting edge accelerator R&D,

Train next generation accelerator scientists - graduate & post doctoral

Attract undergraduate students to the graduate program through introductory courses, laboratory work & summer internships at BNL

- **\*\*** Growth opportunities:
  - → Expand successful Ph.D. and M.S. program
  - → Attract the next generation students
    - Write & teach a curriculum for undergraduates
    - Sponsor a Scholarship Program to attract top undergraduates to USPAS
- \*\* Now operating from SBU seed grant & matching funds from BNL











# National Laboratory programs alone will *not* provide the accelerator professionals that America needs

Assuring the future vitality of accelerator-based science & business requires a new DOE investment in education

### PHIT

#### Impediments we face...





- \*\* Undergraduates must be aware of the intellectual challenge & excitement of accelerator science
- \*\* Top undergraduates expect to study at a great university
- \*\* Students should spend a large fraction of time on campus
  - → An education at a great lab is not an education at a great university

But, where?



#### How to begin...



- \* Some universities have occasional courses
  - → Make them regular not just special topics
- \*\* DOE lab facilities offer thesis research opportunities
  - → Augment with student support (tuition, assistantships, etc.)
- \*\* ANL & FNAL have Lee Teng accelerator internships
  - → Other labs should follow suit
- **\*\*** USPAS offers the opportunity to co-list core courses

BUT, campuses need accelerator physics/engineering faculty

→ Strong university-based research programs to support faculty lines



#### 1) Expand university-based programs



- \*\* Vigorous, PI-driven program at universities allows growth of targeted, high priority R&D relevant to DOE/SC
  - → Essential for innovations in accelerator science
  - → Students can be trained & educated in accelerator science and technology in proximity to top experimentalists & theorists
- \*\* University programs can take a broad perspective with relation to exploratory accelerator science & technology
  - → Offer broad intellectual resources both within physics and allied fields such as engineering, optical sciences, & materials sciences
  - → Optimize incubation of new ideas & fundamental understanding
- \*\* Highly trained cadre of accelerator scientists will be essential to DOE/SC mission & national competitiveness



#### 2) Assure USPAS financial stability



- \*\* Broad variety of USPAS offerings & scholarship support are crucial to existing programs in American universities
- USPAS provides an ideal attraction point & launching pad for undergraduates
- \*\* Maintaining the present level of enrollment & student support requires direct SC funding of USPAS sessions





### Our students will be the future leaders for our field...





#### ... and not just leaders in accelerator physics\*



# The time to invest is now!

Thank you





#### Schools across the Sea



#### **CERN Accelerator School**



- \* Training courses for accelerator physicists & engineers twice a year
  - → Began in 1983
  - → The courses take place in different member states of CERN
  - → Consist of lectures & tutorials spread over a period of one or two weeks.
    - Participants from CERN member states & other countries world-wide
  - → Director: Daniel Brandt
- **\*** Pattern of courses
  - → Spring course on a specialist topic
  - → Autumn course on accelerator physics
    - at the introductory level in even years
    - at the intermediate level in odd years
  - → In even years an autumn course in the framework of the Joint Accelerator School (JAS) program
    - JAS is a collaboration between US, CERN, Russia and Asia
- \* Sessions lead to high quality, written proceedings
  - → See http://cas.web.cern.ch/cas/Proceedings.html



#### The Joint Universities Accelerator School



- \*\* Intensive program for students & modular courses for professionals
- \*\* The full program covers many subjects during 10 weeks from January to March
  - → Two five-week courses taught by Europe's accelerator specialists
  - → Whole program includes about 180 hours of lectures, tutorials, guided studies & seminars
  - → Lectures and tutorials are backed up by site visits / demonstrations
- \*\* Organized by European Scientific Institute
  - → With support of CERN Accelerator School & several major European Universities
  - → Examinations under the control of one of the partner universities validate the courses
    - Successful candidates may obtain credits at their home university through the European Credit Transfer System (ECTS)
    - It is recommended that all students take the examinations, which are *mandatory* for those students who receive a grant



### We make different choices to serve different needs



|                                | USPAS | CAS    | JUAS | JIAS   |
|--------------------------------|-------|--------|------|--------|
| Rigorous for-credit courses    | Y     | N      | Y    | N      |
| Degree program available       | Y     | N      | N    | N      |
| Frequent regular sessions      | 2/yr  | 2/yr   | 1/yr | N      |
| Standing organization w. staff | Y     | Y      | Y    | N      |
| Duration (weeks)               | 2     | 1.5 -2 | 10   | 1.5 -2 |
| On campus                      | N     | N      | N    | N      |
| Conference center/ hotel       | Y     | Y      | Y    | Y      |
| Scholarships available         | Y     | Y      | Y    | Y      |
| Specialty courses              | Y     | Y      | Y    | Y      |
| Fundamental courses            | Y     | Y      | Y    | N      |
| Hands-on courses               | Y     | N      | N    | N      |
| Proceedings                    | N     | Y      | N    | N      |
| Lecture notes on web           | Y     | Y      | N?   | Y?     |

There are also specialty schools such as the recent Linear Collider Schools